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CENTAUR FEEDLINE DYNAMICS STUDY USING POWER SPECTRAL METHODS

by Carl F. Lorenzo

Lewis Research Center

SUMMARY

Tests were conducted to determine the dynamic characteristics of the Centaur/RL-

10 oxygen and hydrogen feedlines. The fundamental-mode resonant frequencies were

determined by applying power spectral methods to noise-generated data from hot firings

of the RL-10 engine. The effect of net positive suction pressure of the main feed pumps

on resonant frequency characteristics was determined to be a straight-line relation.

Power spectral methods were also used to determine the dynamic characteristics

of the boost pumps.

INTRODUCTION

This study was conducted to determine the resonant frequency characteristics of the

Centaur liquid-oxygen and liquid-hydrogen feedlines, so that the lines may be properly

represented in POGO1 analysis. This determination could not be made analytically,

since the effect of pump inlet compliance cannot presently be predicted analytically.

Current studies (e. g., ref. 1) are approaching this problem. Previous studies (e.g.,

ref. 2) have used sinusoidal excitation to determine feedline characteristics. For this

study, it was impractical to use a known sinusoidal disturbance to excite the feedline

dynamics. Hence, the system-generated noise during hot engine firings was used as an

excitation source, and power spectral methods were used to analyze the data.

Specific transfer functions for the feedlines were not determined because of the

difficulty in isolating the large number of potential inputs which could be driving the

lines. (Specifically, each projected area on the line which has a motion can be a dy-

namic pumping source for the feedline.) Instead, resonant frequencies were determined

1POGO - An instability in a rocket vehicle related to an interaction of the propulsion

system with the vehicle structure.



which could be used with conventional modeling to represent the feedlines in POGO

modeling.

APPARATUS

The primary test items are the fuel and oxidizer suction ducts of the Centaur ve-

hicle. The Centaur vehicle used in these tests was housed in an altitude chamber

(figs. 1 and 2) where hot firings of the engines could be performed with the engine noz-

zles flowing full. In addition, the facility has thermal simulation capabilities, so that

the proper heat loads and temperatures can be achieved.

The operation and configuration of the balance of the Centaur vehicle are quite simi-

lar to the flight configuration with the following exceptions: First, the peroxide used to

power the boost pump through a turbine drive is stored remotely from the vehicle and

hence can be controlled to achieve desired speed values. Secondly, the vehicle is

mounted, by attachment to the aft ring, about the periphery of the oxidant tank. Hence,
vibration modes will not be the same as those in flight.

Both feedlines have the following features in common: A boost pump at the propel-

lant tank base feeds a duct, which in turn branches in two directions to feed the two

RL-10 engines used to propel the Centaur. The branches are each terminated in the

main feed pumps. The branches of the liquid-hydrogen feedline are symmetrical. The

branches of the liquid-oxygen feedline are of unequal length, and the common feed duct

is very short. The geometries of the hydrogen and oxygen feedlines are shown in fig-

ures 3 and 4, respectively. The general characteristics and parameters of the Centaur

vehicle are described in reference 3 and will not be repeated herein.

Two types of pressure transducers were used:

(1) Those common to the vehicle normal instrumentation complement: These units,

in general, had response ranges limited to about 100 to 200 hertz, depending on instal-

lation. These transducer signals were ac coupled, so that dynamic effects could be

studied.

(2) Flush-mounted dynamic pressure transducers of the piezoelectric type: These

transducers had a frequency range of 5 hertz to 1 kilohertz (amplitude, ±3 dB).

The purpose of the high-frequency attenuation was to limit the high-frequency con-

tent of this signal, so that maximum recorder range might be utilized in the frequency

range of interest. The primary range of interest was 5 to 50 hertz for frequencies per-

tinent to the POGO problem. However, it was recognized that the line resonance could

be above this frequency range. In addition, it was felt that the availability of higher

frequency data and possibly higher line modes might be useful in identifying the funda-

mental line modes. Hence, the ranges of interest were 0 to 100 hertz for the primary
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modes and 0 to 1000 hertz for higher modes.

An analysis of the liquid-hydrogen feed system is presented in appendix A. All

symbols are defined in appendix B.

PROCEDURE

The following procedure was used in obtaining the required test data: When appro-

priate ambient (test chamber) pressures and temperatures were achieved, the RL- 10

rocket engines were fired. The data were recorded on frequency-modulated recording

tape for later analysis. Test runs were made to allow adjustment of instrument sensi-

tivity when possible. The net positive suction pressure (NPSP) for the main pumps was

varied by adjusting the peroxide flow to the boost pump drive turbines, thereby varying

boost pump speed. In cases where NPSP was varied from the normal operating point,

the off-design condition was achieved by first starting at the normal operating point and

then changing boost pump speed after stable operation had been achieved. The duration

of a data point (i.e., a given NPSP setting) was approximately 120 seconds. From this

data record, sections as long as 80 seconds of "steady state" (constant NPSP) data

could be selected for analysis.

DATA ANALYSIS

The primary data analysis was the determination of the power spectral density for

the sensed signals. From data of this form, the system dynamics could be studied.

The power spectral analysis was performed with a Federal Scientific analyzer. With

this analyzer, the bandwidth is in a fixed relation to frequency range and sample time.

Specifically,

f3 1
T

and

T 500

F

where the bandwidth f, in hertz, is the reciprocal of the time duration of the input sig-

nal (in the digital memory); T is the time, in seconds, for a single sample; and F is
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the frequency range of the analysis in hertz. Two frequency ranges are considered in

this report, 100 and 1000 hertz. The following table summarizes the analysis param-

eters associated with the power spectra presented in the report:

Analysis fre- Single-sample Bandwidth, Noise band- Number of Total

quency range, time, 3, width, a samples time,

F, T, Hz [n' t

Hz sec Hz sec

100 5 0.2 0.32 16 80

1000 1/2 2.0 3.2 128 64

aThe noise bandwidth (or effective bandwidth) [n is the bandwidth of a

rectangular filter which passes a signal with the same mean square

value as the actual filter when the filter input is white Gaussian noise.

Except where noted otherwise, for the 100-hertz analysis, 16 samples were averaged

together, requiring a total recording time of 64 seconds. In all cases, the starting

times of the analysis were the same. Each analysis yields 500 frequency points as

output.

For purposes of this study, the following quantities are of interest: The autocorre-

lation function Rx(T) is defined by

Rx(7) = lim 1 f T x(t)x(t + T) dt
T - =o T

The power spectral density function Gx(f) is defined by

Gx(f ) = 2 f Rx()e-j27f dT = 4 Rx(T) cos 21fT dT

This can also be expressed as

Gx(f ) = im lim 1I x2(t, f, Af)dt
Af-0 T- (Af)T 0

where x(t, f, Af) is that portion of x(t) in the frequency range of f to f + Af.

For more details and applications of these functions, see reference 4 or similar

texts. An approximation to these functions was formed by the analyzer, which is de-

scribed in the analyzer manual (ref. 5). The averaging technique used in the analyzer
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functioned by taking the square of the ensemble average of the voltage (linear) spectrum.

Because of the limitations of the analysis equipment, the frequencies in the first 5 or

10 percent of the analysis range are questionable. For this reason, no important con-

clusions are drawn from that part of the data.

RESULTS AND DISCUSSION

Most of the results of the experimental study are presented as plots of power spec-

tral density (PSD) as a function of frequency. As an aid to interpreting this information,

the rotational speeds of the major components of the RL-10 system are presented in

table I. Associated with each of these rotational speeds is a characteristic frequency

(based on one pulse per revolution), which is also presented in the table. In the data,

multiples of these frequencies also occur. In the tests where NPSP was varied, the

variation was achieved by changing boost-pump turbine speeds. Hence, the frequencies

varied appropriately relative to those in the table.

As indicated previously, the NPSP was stepped between desired values during long

engine firings. Four values of NPSP were studied for each propellant system; these are

tabulated in table II. The plots of NPSP as a function of time, on which the table is

based, are presented in figures 5 and 6. Straight lines have been faired through the

segments of data on which the power spectral analysis was performed.

In interpreting the data that follow, the high power concentrations associated with

turbomachinery rotational speeds and the thrust controller frequency are not of interest.

In general, the data to be presented are considered as the comparison of the PSD's of

two channels. With this form of comparison the square root of the ratio of the PSD's of

the channels could be interpreted as the amplitude ratio if the input channel were the

only input (coherence was equal to 1). Hence, the difference (on a log basis) can be

viewed as a psuedo-transfer-function amplitude ratio.

Apparent in some of the data that follow is a significant frequency content at 5 hertz,

which has been identified as the limit cycle frequency of the thrust controller. This is

indicated quite prominently on the chamber pressure PSD plot in figure 7.

Hydrogen Feedline Dynamics

A diagram of the liquid-hydrogen feedline is shown in figure 8. In this system, a

boost pump supplies a main feed duct which branches into two equal-length legs which in

turn supply liquid hydrogen to the main feed pumps. Indicated on the diagram are both

the pressure and acceleration instrumentation locations and identifying numbers (which
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are referred to in the text). Also shown are the various expansion joints and bellows.

The duct makes many changes in direction. These bends provide projected areas which

under vibration can allow local dynamic pumping of fluid.

Power spectral densities were computed from time histories for each of the instru-

ments indicated in figure 8. This computation was made for both the accelerations and

the pressures. All pressures but 801P were measured with flush-mounted transducers.

The PSD plots obtained from the outputs of these transducers form the key results of

the study.

The power spectral densities for the two extreme ends of the hydrogen duct, that is,

the outlet of the boost pump (803P) and the inlet to the C-2 main fuel pump (802P), are

shown in the top half of figure 9. The NPSP of 47. 5 kN/m 2 (6. 9 psi) for the data of this

plot is the nominal operating NPSP for the RL-10 engine system. The figure shows that

the power spectra are quite similar at the low-frequency end, gradually diverge at medi-

um frequencies to a maximum difference at 44 hertz, and gradually converge again at

high frequencies. This indicates a peak in the amplitude between the two channels and,
hence, a fluid mode of the duct at 44 hertz.

The power spectral density of the pressure at the junction of the branch lines is

added to the curves for 802P and 803P in the bottom half of figure 9. The junction pres-

sure (822P) power spectral density exhibits the same general trends as those of 802P

and 803P but lies between them from 0 to 100 hertz. The junction pressure PSD is very

close to the 803P values.

Figures 10 to 12 present similar data for decreasing values of NPSP. In all cases,

the pressures at the two extreme ends of the hydrogen duct are given, and the junction

pressure is added in a subsequent plot. The general trends are the same as those noted

for the nominal NPSP condition. However, the maximum difference in PSD between the

extreme ends of the line varies with increasing NPSP. This difference would corre-

spond to a damping variation. Further, the frequency at which the resonance occurs

shifts with NPSP.

It is useful to examine these data in another form before generalizing the results.

If the data shown on these plots, together with the remaining pressures indicated in

figure 8, are smoothed to eliminate the statistical variations and cross plotted for a

particular frequency as a function of distance along the duct, these data can be inter-

preted as fluid-pressure-mode shapes.

The transducer 801P was a cavity-type transducer, and its dynamic characteristics

were not known. An indication of that transducer response can be obtained by examining

the PSD of that transducer for all runs relative to similar data for the flush transducer

802P on the C-2 engine side. These plots are shown in figure 13. If we assume that the

two sides behave in a similar manner, comparison of these plots indicates a resonance

in the transducer in the vicinity of 200 hertz. Thus, the transducer would not be valid
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for high frequencies but would appear to be usable at frequencies to 100 hertz.

A magnitude ratio of pressure at some position x along the ducts to pressure at
the junction can be calculated from the PSD's of the signals by using the relation

Px /Gx
JJ

where G is the power spectral density. We assume that the coherence is high, other-

wise this relation is not valid. Applying this procedure to the data of run 8G-1 (fig. 9),
the nominal NPSP condition, yields the fluid-pressure-mode shapes of figure 14. The
parameter on the figure is frequency, ranging from 20 to 50 hertz. As frequency in-
creases from 20 to 44 hertz, the magnitude ratio increases also; above 44 hertz, the
magnitude ratio decreases (e.g., the 50-Hz line). Additional frequencies above 50 hertz
have not been shown in order to eliminate confusion on the plots.

Data are not available for the C-1 engine branch duct except at the termination.
The terminating points are shown on the left side of figure 14; the values are approxi-
mately the same as those for the terminating points on the C-2 engine side. These re-
sults suggest that the behavior is that of a quarter-wave mode with the two branch ducts
acting as parallel elements and behaving in similar manner. Specifically, a mode from
end to end in the branch ducts (i. e., an unsymmetrical mode from engine to engine) does
not occur in this frequency range. This conclusion cannot be drawn from the data alone

since phase information is not available. However, analysis of similar systems (ap-

pendix A) indicates that the unsymmetric mode occurs at a frequency considerably above
the symmetric mode.

Further, the magnitude ratio of the main feed duct being less than 1. 0 indicates that
the dominant disturbance to the system originates near the main feed pump. Again, the
conclusion is based on the rough modeling results of appendix A.

Also, comparison of the experimental pressure-mode-shape results with the

analytically determined mode shape indicates that the experimental mode shapes have a
downward trend in the vicinity of the main pump. This trend is probably caused by the
fact that the termination is not a simple compliance as was assumed in the analytical
m' odel. It is quite likely that nonlinear effects are occurring, probably associated with
the pump inlet cavitation "bubble. " Such nonlinear effects have been discussed in the

literature (e.g., ref. 6). Generally, similar results are obtained as the NPSP is re-

duced from nominal, as shown in figure 15.

The mode shapes of largest magnitude (at resonance) for each NPSP have been

plotted together for ease of comparison in figure 16. Figures 17 and 18 summarize the
experimentally observed behavior of the liquid-hydrogen feedline dynamics as a function
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of NPSP. The resonant frequency (fig. 18) appears as a straight-line function of NPSP.

Although similar results have been observed in the literature (ref. 7), the reader is

cautioned against accepting this result literally since a significant amount of interpreta-

tion is involved in determining the frequency values in view of the statistical variation.

In figure 18 the maximum value of the mode-shape plots is shown as a function of NPSP.

Oxygen Feedline Dynamics

A diagram of the liquid-oxygen feedline is shown in figure 19. The system is func-

tionally similar to the hydrogen feedline, except that the branch ducts for the oxygen sys-

tem are of unequal length, resulting in an unsymmetrical system. Also, the main feed

duct is very short, precluding pressure measurements. Since the liquid-oxygen feedline

is unsymmetrical, it was decided to put the detailed instrumentation on the long leg

(i.e., to the C-2 engine side). A single cavity transducer was placed at the termination

of the C-1 engine feedline (805P). The pressure 809P is considered to be the junction

pressure. The transducer 806P failed during the test sequence. Since it was impracti-

cal to open the facility to replace it, the closest transducer, 812P, will be the basis of

argument in the following discussion.

The power spectral density plots for the oxygen duct as a function of NPSP are pre-

sented in figures 20 to 23. The data in figure 20 were taken at the nominal NPSP of

154. 0 kN/m 2 (22. 3 psi).

The interpretation of the data is not as straightforward for the oxygen feedline as

for the hydrogen feedline. By consideration of both the end pressures and the interme-

diate pressures (through-mode shapes) for all the NPSP for the oxygen duct, it appears

that the duct resonance occurs in the 95- to 100-hertz frequency range. This observa-

tion appears to be contradicted when NPSP is 154. 0 kN/m 2 (22..3 psi) (fig. 22). In this

figure there is some apparent dynamic activity in the lower frequency range. Exami-

nation of the pressure-mode shapes in this area, however, does not indicate a resonant

condition in the feedline. The peak in spectral power at 61 hertz results from the pass-

ing frequencies associated with the liquid-oxygen boost pump and is not a line resonance.

The power spectral densities of the termination pressures, together with those of

the intermediate pressures, are shown in figure 21. From this figure, it becomes more

apparent that the resonance is in the 95- to 100-hertz range. This result is also

shown at an NPSP of 77.9 kN/m 2 (11.3 psi) in figure 22. The intermediate-line-

pressure PSD's at this NPSP are also shown in figure 22. These intermediate values

lie between the PSD's for the terminating pressures, as is shown in the mode-shape

plots which follow. For an NPSP of 55. 8 kN/m 2 (8. 1 psi), figure 23, there is no dy-

namic activity in the low-frequency range.
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Plotting the data from all runs (all NPSP's) for the cavity transducer 805P on a

single plot, figure 24, shows that the corner frequency for the transducer is about

100 hertz. The PSD data generated from this transducer are therefore considered to be

usable over the range 0 to 100 hertz.

The pressure-mode-shape plots for the oxygen feedline are shown in figure 25. The

characteristics are quite similar to those observed for the hydrogen feedline. The char-

acteristic decrease in pressure ratio near the feedline termination, which was seen on

the hydrogen feedline, is not so apparent with these data because of the location of the

transducers on the feedline and the lost transducer.

The right branch termination (pressure 805P) is always near or slightly below the

junction pressure (i.e., Px /Pj I 1).

The pressure-mode shapes as a function of NPSP at the resonant frequencies are

shown together for comparison purposes in figure 26. The variations in resonant fre-

quency with NPSP for the oxygen duct are plotted in figure 27. As for the hydrogen

feedline, a function approximating a straight line fits the data over the frequency range

considered.

Pump Characteristics

Placement of pressure transducers upstream and downstream of the boost pumps

allowed their dynamic performance to be assessed. The power spectral densities for

the liquid-hydrogen boost pump inlet and discharge pressures at NPSP values of 33. 1

and 17.9 kN/m 2 (4. 8 and 2. 6 psi) are shown in figures 28 and 29, respectively. A

striking feature of these data is the significant difference in power content between inlet

and discharge pressure over the entire frequency range (0 to 100 Hz). This difference

is an indication of the noise-generating capability of the pump. The same characteristic

is also exhibited for the main hydrogen feed pump in figure 30. However, the main

hydirogen feed pump data are questionable since it was necessary to place the discharge

transducer some distance from the main flow. The liquid-oxygen boost pump charac-

teristics for NPSP of 98. 5 and 55. 8 kN/m 2 (14.3 and 8 psi) are shown in figures 31 and

32, respectively. For these data the discharge power is higher than the inlet power over

most of the frequency range. However, there are frequency bands over which the inlet

displays power concentrations which exceed those of the discharge. These concentra-

tions occur at 9, 20, and 38 hertz, approximately. It is significant that these concen-

trations are not reflected at the discharge. Indeed, the power concentrations at the

discharge (58 and 54 Hz) occur where there is little or no dynamic activity at the inlet.

The 58- and 54-hertz peaks are the characteristic frequencies (one per revolution) of

the oxygen boost pump. The oxygen main pump characteristics for an NPSP of

154. 0 kN/m 2 (22.3 psi) are shown in figure 33. Here, again, because of the placement
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of the discharge pressure transducer, that measurement may be dynamically degraded.

There are several possible explanations for this type of behavior. The first and prob-

ably most likely explanation is that the inlet measurement is dynamically uncoupled

from the discharge measurement. This uncoupling would occur physically if a large

compliance existed between the two measurements that would prevent the transmission

of information. The second explanation involves the possibility of nonlinearity in the

pump. That is, the frequency concentration at the inlet of the pump might be moved by

pump nonlinear characteristics to a different frequency. For example, if the pump be-

haved in a square-law manner, the energy concentrations would be moved to a frequency

of twice that of the input. In the more general case where the discharge power is

slightly higher than the inlet power, the additional possibility exists that an input (other

than the inlet pressure) of considerably larger magnitude could be generating new fre-

quencies and power levels, such that the inlet pressure effect is lost (or masked). The

overriding input could be the rotational input of the pump shaft reflected through the

blade passing frequencies.

Additional Data

There are several data plots that do not logically fit in the preceding sections but

are worthwhile results of the study.

The power spectral density for C-2 thrust chamber pressure is shown in figure 7.

Here dynamic activity is seen at 5 and 61 hertz. The 61-hertz peak is generated by the

liquid-oxygen boost pump, as indicated previously. The 5-hertz activity was found to

be associated with the thrust control valve located downstream of the main pump in the

liquid-oxygen line. The transducer for this measurement is a cavity type, so that high-

frequency interpretation is precluded.

It is of some interest to examine the high-frequency characteristic of the ducts; this

is done, for several pressures at NPSP near nominal, for the hydrogen duct in figure 34.

The various turbomachinery rotational speeds are readily apparent in the plots.

While accelerometer data was gathered and studied, no significant trends were ob-

served relative to the pressure spectra. One interesting trend was noticed for the

pump-face acceleration spectra; namely, as NPSP was increased the spectrum level

increased over the frequency range of 0 to 100 hertz, as shown in figure 35.

CONCLUDING REMARKS

An experimental study of the Centaur/RL-10 liquid-oxygen and liquid-hydrogen
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feedline dynamic characteristics has been made using power spectral methods. The

resonant frequencies of the feedline have been identified by the power spectral technique

and pressure-mode shapes determined from power spectra. Use of the power spectral

density (PSD) technique eliminated the need of external dynamic excitation during the

hot firing of the RL-10 rocket engines.

The effect of variation of net positive suction pressure (NPSP) was studied; the

relation of feedline resonant frequency to NPSP was experimentally found to be a

straight-line function over the NPSP range covered in the study.

As a generality, the one fundamental difficulty which was observed in applying the

power spectral methods to determination of dynamic characteristics of these physical

systems appears to be associated with determination of the inputs disturbing the system

and in knowing when such inputs are active and influential.

Lewis Research Center,

National Aeronautics and Space Administration,

Cleveland, Ohio, July 8, 1974,

501-24.
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APPENDIX A

ANALYSIS OF LIQUID-HYDROGEN FEED SYSTEM

An analysis of the liquid-hydrogen feed system was performed to assist in inter-

pretation of the experimental data. A linear distributed parameter analysis of the duct

was made. The configuration analyzed is that shown in figure 36, which shows the main

feed duct with two equal-length branch ducts to the main pumps. The cavitation bubble

and the pump and engine impedance were characterized by a resistance and compliance

termination (of unknown magnitude).. The system was excited by four inputs located at

the exit of the boost pump, the inlets to each of the main pumps, and the junctions of the

branch ducts with the main feed duct. The inputs were flow disturbances at all points

except the boost pump discharge, which was a pressure disturbance. These disturb-

ances were analogous to those which might be excited by the motion of a projected area

of the duct. The analysis used the techniques of reference 8, which allow frequency

responses to be easily determined. The block diagram for the system analyzed is shown

in figure 37. The block diagram contains the normal distributed parameter blocks. In

addition, a set of parallel distributed blocks allows computation of pressures along the

ducts (for mode-shape computation). The block diagram was reduced for the transfer

functions Px1/inputs and Px3/inputs.

The effect of driving-point location for the condition

RA = 1. 5x106 N-sec/m 5 (885 lbf-sec/ft 5 )

RE = 3. 56X10 8 N-sec/m 5 (2. 1x10 5 lbf-sec/ft 5

CE = 1. 18x10 - 10 m 5/N (2x10 7 ft5/lbf)

was determined (transfer function of PF/inputs) and is shown in figures 38 to 41. For

the cases presented, the termination impedances RE of the branch ducts are equal.

The response when the system is driven at the boost pump exit (PF/I1) is shown in fig-

ure 38. This could be viewed as the response of the system to boost-pump-generated

noise. The response shows resonances at 48, 219, and 425 hertz, approximately. In

addition, there is a dipole at 237 hertz which is probably caused by the symmetry of the

system (i.e., both branches of the same length). The principal value of the phase angle

is shown in the figures. The response when the system is driven at the junction between

the two branch ducts (PF/12) is shown in figure 39. The resonances occur at the same

frequencies. However, the resonance at 225 hertz now is the dominant resonance rela-

tive to the 48-hertz resonance, which dominated when the I1 signal was driving. From
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these two driving points (I1 and I2), only the symmetrical modes of the system can be

excited. That is, the system will-respond in that manner in which the two branch ducts

behave the same.

The response of the system to excitation at the main pump inlet (I3), called driving-

point impedance, is shown in figure 40. In this case, the symmetrical modes occur as

in the previous cases. However, additional modes occur at frequencies of 73 and

376 hertz which can only be excited from points off the line of symmetry of the system.

Similar results are shown in figure 41, where the excitation source is now at the inlet

to the far pump (PF/4). In this case, the resonance at 48 hertz is very nearly masked

by the asymmetric resonance at 74 hertz. An important analytical result was that for

certain combinations of the terminating parameters the symmetric resonance could be

completely masked in the frequency response plots. This could pose a problem in iden-

tifying such systems by using experimental mode shapes, as was done in the study.

In order to further detail the response of this system, the "mode shapes" as a

function of frequency were determined for the I1 driving point. The symmetrical re-

sponse of the system to excitation at I1 for frequency steps between 20 and 70 hertz is

shown in figure 42(a). Plots of the mode shape with excitation at point I1 at the sym-

metric and asymmetric resonances of 48 and 74 hertz, respectively, are shown in fig-

ure 42(b). The relative phase angles between the local pressure and the excitation flow

are shown on the plots.

The results of unsymmetrical excitation (exciting at 13) for the same system are

indicated in figure 43(a). Again, mode-shape plots near the resonant frequencies are

indicated in figure 43(b). These plots are notably different than the results indicated in

figure 42(b).

The responses when the system is excited at the junction have not been shown. But

experience with the analysis has shown that the mode shapes on the branch ducts always

follow the identical values that are obtained with excitation at 11 and that the values on

the main feedline always have the same values as those obtained when the system is

driven at 13.

The effects of terminating compliance and resistance on resonant frequency are
506  5 5shown in figure 44, where RA = 1. 5X10 N-sec/m 5 (885 lbf-sec/ft 5 ) and the excitation

source is at point I. When the driving point is moved to point 13, the asymmetric

mode occurs also, as is indicated in figure 45. The situation where the symmetric mode

is obscured by the asymmetric mode is shown in figure 46. In these cases the numer-

ator terms of the solutions appear to be very important and move the apparent resonant

frequency (indicated by amplitude peak) as a function of driving point. This is shown in.

figures 47 to 50, where the resonant frequencies are 27, 30, 43, and 41 hertz, when

driving at 11, 12, 13, and 14, respectively.

13



APPENDIX B

SYMBOLS

C compliance, m5/N (ft 5/Ibf)

c sonic speed, m/sec (ft/sec)

F analysis frequency range, Hz

f frequency, Hz

Af effective filter bandwidth, Hz

Gx(f) power spectral density function

I disturbance input location (fig. 36)

1 line length, m (ft)

N number of samples

P pressure, kN/m 2 (psi)

Q volume flow, m3/sec (ft3 /sec)

R resistance, N-sec/m 5 (lbf-sec/ft5 )

Rx(7) autocorrelation function

S Laplace operator

T time per sample, sec

t time, sec

x variable; position along feedline

Z characteristic acoustic impedance, N-sec/m 5 (lbf-sec/ft5

0 bandwidth, Hz

n noise bandwidth, Hz

- time displacement, sec

Subscripts

A, E, F, J position in feedline (figs. 36 and 37)

j junction

x position along feedline

1,2, 3 segment of feedline (fig. 39)
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TABLE I. - TYPICAL ROTATIONAL SPEEDS OF MAJOR

COMPONENTS OF RL-10 SYSTEM

Component Rotational Characteristic

speed, frequency,

rpm Hz

Liquid-oxygen pump 12 300 205

Liquid-hydrogen pump and turbine 30 700 512

Liquid-hydrogen boost pump turbine 40 800 680

Liquid-hydrogen boost pump 6 820 113.6

Liquid-oxygen boost pump turbine 33 600 560

Liquid-oxygen boost pump 3 690 61.6

TABLE II. - NET POSITIVE SUCTION PRESSURE FOR

LIQUID HYDROGEN AND OXYGEN RL-10

PROPELLANT SYSTEMS

Run Liquid-oxygen-system Liquid-hydrogen-system

net positive suction net positive suction

pressure pressure

kN/m 2  psi kN/m 2  psi

8F-1 78.3 11.3 23.4 3.4

8F-2 55.9 8.1 17.9 2.6

8G-1 154.0 22.3 47.6 6.9

8G-2 98.5 14.3 33.1 4.8
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Heat-sink headers Top cap-

Screw lifting d - . 11 1 V1v
S c fnd e-Mezzanine floor

> Heat sink
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Test vehicle--- "-Diffusion pumps (10)

Diffusion pump floor

Transformer banks--*- simulators

Terminal boxes-Water pumps (7)

-ve Water pump floor

Bottom access open ing'

Veh support (6

Exhaust dffser PurgeScale in feet
... o.....coolin spra system-- A

'Spray chamber Engine au1 -847-1

Figure 2. -Cross section through test chamber of Spacecraft Propulsion Research Facility (B-2.



Figure 3. - Liquid-hydrogen feedline.

Figure 4. - Uquid-oxygen feedline.
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Tank shutdown
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Time from engine start, sec

Figure 5. - Static net positive suction pressure of liquid hydrogen during C-2 engine firing.
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pressure drop Engine

I I shutdown

0 20 40 60 80 100 120 140 160 180 200 220 240
Time from engine start, sec

Figure 6. - Static net positive suction pressure of liquid oxygen during C-2 engine firing.
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Figure 7. - Power spectral density of C-2 engine chamber pressure (821P).
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Figure 8. - Location of instrumentation on liquid-hydrogen feedline for Centaur RL-10 dynamics tests in Plum Brook B-2 test facility,,
View looking forward.
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10-4 I I I I I I I
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Figure 9. - Power spectral density of liquid-hydrogen feedline at a net positive suction pressure of 47.6 kNIm 2 (6.9 psi) - run 8G-1.
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Figure 10. - Power spectral density of liquid-hydrogen feedline at net positive suction pressure of 33.1 kN/m 2 (4.8 psi) - run 8G-2.
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Figure 11. - Power spectral density of liquid-hydrogen feedline at net positive suction pressure of 23.4 kN/m 2 (3.4 psi) - run 8F-1.
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Figure 12. - Power speciral density of liquid-hydrogen feedline at net positive-suction pressure of 17.9 kNIm 2 (2. 6 psi) - run 8F-2.
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Figure 13. - Power spectral density of C-i and C-2engine fuel pump
inlet pressure.
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Feedline schematic

C-i engine side C-2 engine side

4-
Frequency,

O Hz
44
40

3-o
0 ©O

50

35

12-

E O3

03

20

",-Main feed duct

i Position along feedline, x

Figure 14. - Pressure magnitude ratio for liquid--hydrogen feedline at nominal net positive suction pressure of 47.6 kNIm 2 (6.9 psi) - run 8G-1.
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4 - Feedline schematic

C-I engine side C-2 engine side

3- Frequency,
Hz

0- 39.3
C_ 35

0 30'0 50
2-
S O

25

O ca_ 20

1- i

Main feed duct

0I

Position along feedline, x

(a) NPSP = 33. 1 kN/m 2 (4.8 psi); run 8G-2.

Figure 15. - Pressure magnitude ratio for liquid-hydrogen feedline at net positive suction pressures (NPSP) below nominal.
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Feedline schematic
4-

C-1 engine side C-2 engine side

0
Frequency,

3- Hz

36.5

C 0

E

20

-Main feed duct

01I
Position along feedline, x

(b) NPSP = 23.4 kN/ m2 (3.4 psi); run 8F-1.

Figure 15. - Continued.
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Feedline schematic

C-1 engine side C-? engine side

3 Frequenc
Hz

2- 40

030

- 25

O 20

0215

01

-Main feed duct

0
0- Position along feedline, x

(c) NPSP 17.9 kNI /mn2 (2.6 psi); run 8F-2.

Figure 15. - Concluded.
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Run Resonant Net positive
frequency, suction pressure,

Hz kN/ m2 (psi)

0 8F-1 36.5 23.4 (3.4)
E 8F-2 34.0 17.9 (2.6)
D 8G-1 44.0 47.6 (6.91
L 8-2 39.3 33.1 (4.81

4

Feedline schematic

C-I engine side C-2 engine side
Q

0

3 _ O O
3 -0

2

1-

Main feed duct

Position along feedline, x

Figure 16. - Comparison of maximum pressure magnitude ratios at resonant frequencies - liquid-hydrogen feedline.
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Figure 17. - Resonant frequency as a function of net positive suction pressure - liquid-hydrogen
feedline.
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0-O fO
23

0 10 20 30 40 50 60
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Figure 18. - Maximum pressure magnitude ratio as a function of net
positive suction pressure - liquid-hydrogen feedline.
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Figure 19. - Location of instrumentation on liquid-oxygen feedline for Centaur RL-10 dynamics tests in Plum Brook 8-2 test facility. View looking
forward.
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Figure 20. - Power spectral density of liquid-oxygen feedline at a net positive suction pressure of 154.0 kN/m 2 (22. 3psi) - run 8G-1.
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Fig ure 20. -Power spectral density of liquid-oxygen feedl ine at a net positive suction pressure of 154. 0 kN/ m 2 (22. 3 psi) - run 8G-l.
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Figure 21. - Power spectral density of liquid-oxygen feedline at a net positive suction pressure of 98.5 kNI m2 (14.3 psi) - run 8G-2.
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Figure 22. - Power spectral density of liquid-oxygen feedline at a net positive suction pressure of 78. 3 kN/m 2 (11.3 psi) - run 8F-1.
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Figure 23. - Power spectral density of liquid-oxygen feedline at a net positive suction pressure of 55.9 kN/m 2 (8. 1 psi) - run 8F-2.
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Figure 24. -Power spectral density of C-1 engine oxygen pump inlet pressure (805P).
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Figure 24. - Power spectral density of C-l engine oxygen pump inlet pressure (805P).
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Feedline schematic
II

C-I engine side C-2 engine side

Frequency,
2 Hz

100

97.50

95
92.5

S- 90

.L

0

Z(a) NPSP = 154.0 kNI m2 (22.3 psi); run 8G-1.
3-

E

96

92.5
100

D
2- 90

85

80

10

0
Position along feedline, x

(b) NPSP - 98.5kNIm 2 (14.3psi); run 8G-2.

Figure 25. - Pressure magnitude ratio for liquid-oxygen feedline at various net positive suction pressures (NPSP).
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Feedline schematic

3 C-1 engine side C-2 engine side
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LL080
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0

0~

Position along feedline, x

(d) NPSP = 55.9 kN/I m2 (8.1 psi); run 8F-2.

Figure 25. - Concluded.- -
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III,
Feedline schematic

C-1 engine side C-2 engine side

3-
Run Resonant Net positive

frequency, suction pressure,
Hz kNI m2  (psi)

0 8F-I 96 78.3 (11.3)
O 8F-2 95 55.9 (8.1)
Q_ 0 8G-1 100 154.0 (22.3)

-- 2 A 8G-2 96 98.5 (14.3)
2

E

a. ~

0

CL

0 Position along feedline, x

Figure 26. - Comparison of maximum pressure magnitude ratios at resonant frequencies - liquid-oxygen feedline.

42



105 -

S 00

00

95-

Nominal 246 5 kN/
-oetin 2465 kN m

range 137 psi)

90 I I I I
40 60 80 100 120 140 160

Net positive suction pressure, kNIm 2

I I I
5 10 15 20 25

Net positive suction pressure, psi

Figure 27. - Resonant frequency as function of net positive suction pressure - liquid-oxygen
feedline.
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Figure 28. - Power spectral density of liquid-hydrogen boost pump at a net positive suction pressure of 33.IkN/m 2 (4.8 psi) -
run 8G-2.
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Figure 29. - Power spectral density of liquid-hydrogen boost pump at a net positive suction pressure of 17.9 kN/Im 2 (2.6 psi) -
run 8F-2.
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Figure 30. -Power spectral density of liquid-hydrogen main pump at a net positive suction pressure of 47.6 kN/m 2 (6. 9 psi) -
run 8G-1.
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Figure 31. - Power spectral density of liquid-oxygen boost pump at a net positive suction pressure of 98. 5 kN m2 (14.3 psi) -
run 8G-2.
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Figure 32. - Power spectral density of liquid-oxygen boost pump at net positive suction pressure of 55. 9 kN/m 2 (8. 1 psi) - run 8F-2..
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Figure 33. - Powerspectral density of liquid-oxygen main pump at a netpositive suction pressure of 154.0 kN/m 2 (22.3psi) -

run 8G-1.
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Figure 34. -Power spectral density of liquid-hydrogen feedline at high frequencies - run 8E-1.
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Figure 35. - Power spectral density of liquid-oxygen feedline acceleration and liquid-oxygen pump face acceleration at various
net positive suction pressures.
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Figure 37. -Block diagram of hydrogen feedline.
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Figure 38. - Hydrogen feedline frequency response PF/QJ.- driving at 12.
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Figure 39. - Hydrogen feedline frequency response PF/Qj - driving at 12.
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Figure 40.- Hydrogen feedline frequency response PFIQ3 - driving at 13.
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Figure 41. - Hydrogen feedline frequency response PF/Q4 - driving at 14.
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Feedline schematic

2

1-

01

(a-i) Frequency, 20 hertz.
2

1-_

0

(a-2) Frequency, 30 hertz.
2-

CT (a-3) Frequency, 40 hertz.

2

E

(a-4) Frequency, 45 hertz.
2

1I .

0

(a-5) Frequency, 50 hertz.4-
3-

2-

Position along feedline, x

(a-6) Frequency, 60 hertz.

A(Symmetrical response of system for frequency steps between 20 and 70 hertz.

Figure 42. - Pressure magnitude ratio- hydrogen feedline driving at 11.

RA= 1. 5x106 N-sec/ m5 (885 Ibf-sec/ ft 5); RE = 3. 56x108 (2. 1x10 5 lbf-secl ft5);

CE = 118x10 - 10 m5lN (2x10 - 7 ft 5 Ibf).
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Feedline schematic
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Figure 42. - Continued.
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Feedline schematic
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(b-2) Frequency, 74 hertz.

(b) Symmetrical and asymmetrical responses near resonant frequencies of 48 and 74 hertz.

Figure 42. - Concluded.
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Feedline schematic

2-

1

(a-1) Frequency, 20 hertz.
o 3

S 2-

0'

(a-2) Frequency, 30 hertz.

Position along feedline, x

(a-3) Frequency, 40 hertz.

(a) Symmetrical response of system for frequency steps between 20 and 70 hertz.

Figure 43. - Pressure magnitude ratio - hydrogen feedline driving at 13.
RA = 1.5x106 N-sec/ m5 (885 Ibf-sec ft5); RE = 3. 56x108 (2. 1x10 5 Ibf-sec/ft5);

CE = 118x10 - 10 m5/ N (2x10 - 7 ft5l Ibf).
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Feedline schematic
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0
(a-4) Frequency, 45 hertz.

0~

" 2

9(a-5) Frequency, 50 hertz.
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0
Position along feedline, x

(a-6) Frequency, 60 hertz.

(a) Continued.

Figure 43. - Continued.
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Feedline schematic
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(a-7) Frequency, 65 hertz.
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(a-8) Frequency, 70 hertz.

(a) Concluded.

Figure 43. - Continued.

62



Feedline schematic
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(b-2) Frequency, 73.2 hertz.

(b) Symmetrical and asymmetrical responses near resonant frequencies of 47.6 and
73.2 hertz.

Figure 43. - Concluded.
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100 - 0 Nominal terminating resistance,
RE = 3. 56x107 N-secl m

5 (21 000 Ibf-secl ft
5 )

O 10 and 100 times nominal
O 2.4 times nominal

80- O0 0.5 times nominal
A 0.75times nominal

60-

40-

20-

10-6 10- 5  10- 4  10- 3  10- 2

Termination compliance, ftS/lIbf

I I , I, I , I I , i , I l , I I , I i, I , I
10-8 10-7 10- 6  10-5

Termination compliance, ft5 l/Ibf

Figure 44. - Resonant frequency as function of termination compliance - based on peak in

PF/ PAD- RA= 1. 5x10 6 N-secl m
5 (885 lbf-seclft

5).
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O Nominal terminating resistance,
RE = 3. 56x107 N-sec/ m5 (21 000 Ibf-sec/ ft5)

O 10 and 100 times nominal
0.05times nominal

o 0. 5 times nominal
L 6 times nominal

100- 0 O. S 0. 1 times nominal
C 0.01 times nominal

80-

60 -

2 40-

20-

n I , I , ,1,l I , I i d dl, I , 1 s i l l,I I -. 1 , I l d,
10- 6  10-5 10-4 10-3 10-2

Termination compliance, m51N

I , I I I i l I , I ,l i l I , I ,I I l
10-8 10-7 10-6 10-5

Termination compliance, ft5 1Ibf

Figure 45. - Resonant frequency as function of termination compliance - based on peak in

PF/Q3 . RA = 1. 5x10 6 N-sec/m 5 (885 lbt-sec/ft5 ).
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100-

80-- ,-First mode

60-
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.,-Second

20 . mode

0, I Iu Ih I 1 I I I I , I I
10-6 10-5 10-4 10-3 10-2

Termination compliance, m5/ N

I 1 , .,IJ I i 1 .t I , ItII I
10-8 10-7 10-6 10-5

Termination compliance, ft5l lbf

Figure 46. - Resonant frequency as function of termination compliance - hydrogen
feedline driving at 13- with symmetric mode obscured by asymmetric mode.

RA = 3.0x106 N-secl m5 (1670 Ibf-secl ft5); RE = 3. 56x108 N-secl m5 (1000 Ibf-secl ft5).
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Figure 47. - Hydrogen feedline frequency response at resonant frequency
of 27 hertz PFI PAD - driving at 11.
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Figure 48. - Hydrogen feedline frequency response at resonant frequency
of 30 hertz PFIQJ - driving at 12.
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Figure 49. - Hydrogen feedline frequency response at resonant frequency
of 43 hertz PF Q3 - driving at 13.
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Figure 50. - Hydrogen feedline frequency response at resonant frequency
of 41 hertz PFI Q4 - driving at 14.

70 NASA-Langley, 1974 E-7482




